The 2-block splitting in symmetric groups
نویسندگان
چکیده
منابع مشابه
A 2-block Splitting in Alternating Groups
In 1956, Brauer showed that there is a partitioning of the pregular conjugacy classes of a group according to the p-blocks of its irreducible characters with close connections to the block theoretical invariants. In a previous paper, the first explicit block splitting of regular classes for a family of groups was given for the 2-regular classes of the symmetric groups. Based on this work, here ...
متن کاملBlock-transitive designs and maximal subgroups of finite symmetric groups
of finite symmetric groups.
متن کاملLecture 2: Representations of Symmetric Groups, Ii
Recall that last time we have introduced the set of weights Wt(n) ⊂ C and an equivalence relation ∼ on Wt(n). Our goal is to describe this set and this equivalence relation – the equivalence classes are in a natural bijection with Irr(Sn). The first step here is as follows. Pick a path P = V 1 → V 2 → . . . → V n in the branching graph and an integer k with 1 < k < n. We fix all vertices but V ...
متن کاملThe 2-modular Decomposition Matrices of the Symmetric Groups
In this paper the 2-modular decomposition matrices of the symmetric groups S15, S16, and S17 are determined by application of methods from computational representation theory, in particular condensation techniques, and by using the computer algebra systems GAP, MOC, and the MeatAxe.
متن کاملSplitting group divisible designs with block size 2×4
The necessary conditions for the existence of a (2 × 4, λ)-splitting GDD of type g are gv ≥ 8, λg(v−1) ≡ 0 (mod 4), λg2v(v−1) ≡ 0 (mod 32). It is proved in this paper that these conditions are also sufficient except for λ ≡ 0 (mod 16) and (g, v) = (3, 3).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2007
ISSN: 1937-0652
DOI: 10.2140/ant.2007.1.223